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José Leonardo Flores Quintanilla
ITESM San Luis campus, México

Mechatronics Undergraduate Program
Av. Eugenio Garza Sada 300

C.P. 78211 San Luis Potos, SLP., México
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Abstract

This paper shows the integration of Bayesian
networks (BN) and Particle Filtering (PF) to de-
sign a system of fault detection and diagnosis. In a
production line there are several interconnected ma-
chines which have several components. If a failure
occurs in this production line, it is very difficult to
find the faulty element. BN are used to predict a
set of machines which have a high probability to fail.
Then, these machines are monitored continuously to
quickly detect when a component has failed. We
tested our ideas in the simulation of a productive
process which has two machines. The objective is to
find the faulty machine and its damaged element.

Keywords: FDI, Bayesian Networks, Parti-
cle Filtering, look ahead Rao-Blackwellized Particle
Filter.

1 Introduction

As a result of experimental research and the
need for treatment of a lot of data, the use of comput-

ers and microprocessors began. As soon as the use
of the computers and microprocessors were expanded
to automation and monitoring of several processes, a
method of supervising hundreds of control loops was
required. However, these systems require a diagnosis
to establish some decisions. A kind of supervision
to tell human beings the status of certain physical
variables is necessary. So that we determine whether
the system is working properly or not.

When a machine fails in a real process, the
maintenance people look for the faulty elements, and
correct them, which take minutes, hours or even days
to finish depending on the complexity of the failure.
Therefore, if the maintenance personnel knows in ad-
vance the damaged elements the production line will
stop for a short time.

1.1 Fault Diagnosis Methods

The task of fault diagnosis is difficult due to
complex fault scenarios. For example, mechanical,
electrical and electronic devices are related, work to-
gether. Uncertainty in information, and lack of do-
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main knowledge.
According to [4] fault detection methods

are classified in model-free methods: physical re-
dundancy, special sensors, limit checking,etc., and
model-based methods: Kalman filter, diagnostic ob-
servers, parity relations, etc.

Model-based methods utilize an explicit math-
ematical model of the monitored plant; their natural
mathematical description is in the form of differen-
tial equations, or equivalent transformed representa-
tions. Most of the model based fault detection and
diagnosis methods rely on analytical redundancy.

1.2 Bayesian networks fault detection
and diagnosis

The previously mentioned methods are pow-
erful if the designer considers all the variables of the
modeled-process being represented. However, it is
very difficult to establish all the model equations
as the system grows in complexity. Furthermore,
all these methods do not take into account uncer-
tainty, which is important because the presence of
uncertainty changes radically in the way decisions
are made.

BNs are frameworks which do not need a com-
plete mathematical model of the system, and they
work well in the presence of uncertainty [4]. That
is why BNs are an important alternative that solve
fault diagnostic problems.

We will show the integration of BNs to solve
a fault diagnosis problem.

1.3 Problem description

A production line in a factory can be thought
of as a set of interconnected machines. These ma-
chines are made up of several components which can
be seen as series RL circuits. As the ratio of possible
failures in this system is high, because of the number
of total components, a monitoring system for faulty
component is required. A monitoring system which
consists of two phases, can be implemented in the
following way:

Phase I. A BN based on data, models the
system behavior in probabilistic terms, It consid-
ers that we have n interconnected machines. The
failure probabilities of each machine, based on evi-
dences, are updated periodically. The BN is used to
select the machines with a high probability of failure.
These machines are continuously monitored to find
the damaged components.

When Phase I is completed, the diagnosis sys-
tem will make different decisions depending on the

results in Phase I according to the following.

1. If the probability of failure of the machines does
not change, then PF will continue monitoring
the same machines to find damaged compo-
nents.

2. If the probability of failure, in a non monitored
machine, increases to a warning level, then a PF
must be started to monitor this machine.

3. If the probability of failure, in a monitored ma-
chine, increases, then, PF must increase its reli-
ability, taken a greater number of particles.

4. If the probability of failure, in a monitored ma-
chine, decreases, then PF must reduce the num-
ber of particles in a first stage. If the tendency
remains, the PF must stop in that machine.

Phase II. In this phase, a Particle Filter al-
gorithm is continuously running in the selected ma-
chines in Phase I, to detect a failure in the moment
that it appears. PF increases, decreases its number
of particle depending on the results of Phase I.

The initial BN will be updated frequently to
avoid remaining static. Time and effort are required
to update the BN. If failures frequently appear in
Phase I, possibly Phase II will not detect the problem
unless the problem comes from a machine where PF
is already running.

2 Methodology

2.1 Considerations

We simulate a part of a productive process
where there are two machines controlled and super-
vised by the same control panel, Figure 1.

Each machine is composed of two or three
identical RL series circuits. Besides, each machine as
well as its individual circuits has its breakers which
protect the rest of the system against overcurrent.
Also, these breakers are used when machines or in-
dividual circuits need maintenance.

The interaction between continuous and dis-
crete variables is shown in this application. Discrete
variables are the machines and circuit breakers, and
the continuous variables are given by the main cur-
rent in the whole system as well as the circuit pa-
rameters.

The main tasks are to determine when there
is a fault, which of the two machines is faulty mode
and which circuit has the problems. In addition, we
need to show which of the two components of the in-
dividual faulty circuit are damaged and what kind of
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Figure 1: Schematic diagram of the two machines
with their serie resistance-inductance circuits.

fault it has, according to the limits permitted. That
is, say whether the faulty component passed the low
or high limit.

A normal condition is when none of the circuit
components have passed its low or high limit values.
These limits are calculated using a change of 20%
of the original values of the components. Therefore,
if there is only one circuit connected and there is a
change higher than 5% in the main current, a fault is
probably occuring. Similarly, if there are two circuits
connected the change in main flow current indicates
a probable fault is 2.5 %; three connected circuits
is 1.70 %; if there are four connected circuits the
respective main current indicates a probable fault is
1.25 % and for five it is 1.10 %.

2.2 Design of the fault detection and
diagnosis system

It is important to say that a requirement to de-
sign intelligent systems is modularity, which makes
their analysis more feasible and prepares them to
grow easily. This action will help the designer too,
because it is easy to generate specialized agents to
do certain tasks and later join those agents to gen-
erate a complex system. Figure 2 shows the general
proposed architecture, [3].

In Figure 2 the problem is divided in two im-
portant phases, each having its requirements.

We will describe each block:

1. Facts, assumptions, knowledge base. This block
contains all the known facts about the process
under diagnosis, together with a set of assump-
tions regarding the behavior of the process un-
der certain conditions.

Figure 2: General architecture for the diagnosis sys-
tem.

2. Data discretization for first phase. Initially con-
tinuous variables are discretized. In our appli-
cation the only continuous variable that we dis-
cretized was the main current.

3. Bayesian network. This block contains a special-
ized software “Power Constructor”1 developed
to create BN; It uses data bases in the form of
discrete variables. We treat the BN using evi-
dence in a set of variables and look at the rest
of variables to predict the possible faults that
could be presented. We use Hugin2 software in
this step.

A BN is a data structure used to represent de-
pendencies among variables; this network has
the full joint probability distribution [10]. The
nodes of the BN are random variables that may
be continuous or discrete; each node has a condi-
tional probability distribution which gives us in-
formation about the effect of the parents on the
node. The node X is said to be a parent of the
node Y if there is an arrow from node X to node
Y. Furthermore, if the network has time vary-
ing relations between its variables, the network
is called dynamic Bayesian network (DBN).

4. Subset of explanations. Once that data has been
analyzed a subset of explanations is given where
a possible fault is located in the system. This is
just a subset of the results, taking into account
just the ones with major values in probability,
as indicated.

5. Data discretization for second phase. Dis-
cretization is needed for the continuous dynamic
behavior of the system.

6. Particle Filtering. This is a block of the final
part of the diagnosis, where we use PF tech-
niques.

1http://www.cs.ualberta.ca/ jcheng/bnpc.htm
2http://www.hugin.com
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7. Final Diagnosis. A final diagnosis is given ac-
cording to the integration of the two techniques
named above and shown in following subsec-
tions.

2.3 Implementation of Phase I

We will briefly describe the basic steps for the
first phase:

1. The first step was the creation of a table, which
describes the behavior of all the breakers which
constitute the whole system as well as the be-
havior of the main current. This means we
made a table with all of combinations of breaker
states; as a result, the data is generated for the
BN of the whole system.

2. The second step was the discretization of the
variable called current, which is a continuous
variable. The result are ten different fault
states.

3. The third step was the construction of the
Bayesian networks using the software “Power
constructor”. This is done by importing the
data base of all discretisized system variables
from Excel.

4. The fourth step is to use Hugin, a specialized
software, to make inferences and analysis in
Bayesian networks.

2.4 Implementation of Phase II

Given the most recent evidence, we know
which machines have the highest probability of fail-
ing having completed the first phase. Now, in
Phase II, we will monitor those machines to detect
which component is failing.

2.4.1 Particle Filter algorithm

A Particle Filter (PF), a Markov chain Monte
Carlo algorithm, approximates the belief state using
a set of samples called particles. The distribution of
the particles is updated taking into account the last
available samples as time increases. The standard
PF algorithm consists of three sequential steps:

1. Monte Carlo step. This step takes into account
the evolution of the system as time increases.
Mathematically, it has the following representa-
tion, [2] :

zt ∼ p(zt|zt−1) (1)

xt+1 = A(zt)xt + B(zt)γt + F (zt)ut (2)

yt = C(zt)xt + D(zt)vt (3)

The previous stochastic model of the system is
used to generate the predicted future state for
each particle. We sampled a discrete mode equa-
tion (4) then the continuous state given the new
discrete mode equation (5) .

ẑ
(i)
t ∼ p(zt|z(i)

t−1) (4)

x̂
(i)
t ∼ p(xt|ẑ(i)

t , x
(i)
t−1) (5)

2. Sequential Importance Sampling step. With
conditioning on the new information and the
Bayes rule, each particle is weighted by the like-
lihood of the observations in the updated state
represented by that particle equation (6).

ŵ
(i)
t ← p(yt|ẑ(i)

t , x̂
(i)
t ) (6)

3. Selection step. High-weight particles are re-
placed by several particles while low-weight
particles tend to disappear.

PF algorithms approximate the true posterior
belief state given observations y1:t by a set of
particles.

p(zt, xt|y1:t) =
1
N

N∑

i=1

w
(i)
t δ(zt ,xt)(z

(i)
t , x

(i)
t ) (7)

Where w
(i)
t is the weight of a particle, z

(i)
t are

the discrete modes, x
(i)
t are the continuous pa-

rameters and δ(·)(·) is Dirac delta function.

Rao-Blackwellized Particle Filtering is a PF
variant which uses some of the analytical structure
of the model.

If we know the values of the discrete modes zt,
it is possible to calculate the distribution of the con-
tinuous states xt. According to the Rao-Blackwell
theorem, this leads to estimators with less variance
than those obtained using only pure Monte Carlo
sampling. Thus, if we can generate particles of z
and analytically evaluate the expectation of x given
z, we will need less particles for a given accuracy.
We can therefore combine a PF , which compute the
distribution of the discrete modes, with a bank of
Kalman filters, which compute the distribution of
the continuous states.

[6] proposed a further improvement look-
ahead RBPF. While evaluating the importance of
weights for particles at time t, la-RBPF looks ahead
one step to see the behavior of the measurements at

173



ISBN: 970-32-2137-8

      CONGRESO ANUAL DE LA AMCA 2004

time t + 1. It then uses this information to compute
better weights at time t. The basic sequential steps
are Kalman prediction, Selection, Sequential Impor-
tance Sampling , and Kalman updating.

2.5 Experimental Tests

2.5.1 Phase I

An expert generates data for the machines us-
ing maintenance records, data sheets from suppliers,
intuition etc. Once the data base has been created,
this file is opened with Power Constructor to cre-
ate the BN and then, this information is exported
to Hugin. The join distribution for the whole net-
work appears in this software. Figure 3 shows the
Bayesian network.

Figure 3: System’s Bayesian network

When the BN is in Hugin, there is the possi-
bility of making some inferences on certain variables
which predict the behavior of the system as shown
in Figure 4.

Figure 4 shows an evidence of 7.35 amperes.
The subset of explanations is the following:

• Breaker 1 has a probability of 50.82% of being
opened; therefore, machine 1 has a probability
of 50.82% of being turned off. This breaker con-
nects the power supply to the machine.

• Breaker 2 is closed; thus, machine 2 has a prob-
ability of 93.74% of being turned on.

• Breakers 3 and 4 are opened; therefore, machine
1 is turned off.

• Breaker 7 is opened.

• Breakers 6 and 5 are closed.

• Class F, the final node, indicates that circuits 2,
3 and 4 have a probability of being faulty. They
have the maximum values of probability.

Figure 4: Evidence of 7.35 amperes of current

2.5.2 Phase II

For this phase, we tested the system with sev-
eral runs and different number of particles. We have
executed 20 runs without the presence of noise in the
system, as well as 10 runs taking into account dif-
ferent values of noise in process and measurements.
Finally, we obtained the mean (µ) and standard de-
viation (σ) of the diagnosis error in all runs. The
diagnosis error is the result of the correct estimated
states divided by the total states.

3 Results

3.1 Discussion

Table 1 shows a summary of the system behav-
ior for the la-RBPF algorithm using different number
of particles and different values of noise.

Note that the mean and standard deviation of
error diagnosis are smaller as the number of particle
grows up.

Figure 5 shows the behavior for 50 particles
with low level noise. Top graphs show the actual
states and the measured variable of the process. Bot-
tom plot shows the behavior of the la-RBPF in one
run out of the ten runs with noise.
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Noise 10 Particles 50 Particles
p m µ % σ % µ % σ %
0.0001 0.0001 4.08 8.69 0.45 1.00
0.01 0.01 16.66 4.41 12.53 2.67
0.01 0.1 23.65 3.47 20.49 2.38
0.1 0.1 30.49 0.98 30.75 0.54

Table 1: la-RBPF performance for different number
of particles and noises; p is for process noise and m
is for measurement noise

Figure 5: State estimation with 50 Particles and
small level of noise

As we can see in table 1 in presence of noise the
algorithm has low performance. We can cope with
high noise level increasing the number of particle;
however, high level noise kills la-RBPF features.

3.2 Conclusions

In this paper the application was focused on
a simple model of a production line which have two
machines. However, a real production line will have
many circuits similar to the analyzed model. In the
real model, which has many components that might
fail, it is required to choose only those machines with
greater probability to fail. This is done using BN.
Then the PF technique is used to continuously mon-
itor those machines to detect if a component has
changed its parameters values. The BN is period-
ically updated based on evidence to have a reliable
system.
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